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A. OBJECTIVES 
 

In recent years, the feature extraction approach [1] for data compression and object 
recognition has been drawing a lot of attention.  Principal Component Analysis (PCA) [2-10] is 
one of the most effective linear techniques for feature extraction in the image-processing field.  
PCA is a statistical second-order analysis tool, and the principal information of the object can 
mostly be represented in a few principal component vectors.  Based on a few principle 
components as features of the object, the recognition can be processed with less computational 
power and more reliability. 
For object recognition in a dynamic environment, when the shape of the object keeps changing 
with time, real-time adaptive PCA can be an effective approach in dealing with this dynamical 
information and to keep track of the changes of its features.  In order to enable the real-time 
adaptive PCA approach, the network is required to be simple, hardware-friendly and 
architecture-optimal so that the hardware implementation can be achieved.  

The objective of this task is to study the feasibility of a real-time adaptive PCA approach 
which is applied to obtain real- time feature extraction for object recognition and data 
compression in the dynamic scene. 

 
B. PROGRESS AND RESULTS 
 

1. Science Data 
 

It was found with the simulation that our proposed real-time adaptive PCA 
technique surpassed the current state of the art, e.g., gradient descent technique with respect to 
hardware simplification, fast learning convergence, and compact and low-power embodiment  
which enables real-time object recognition when implemented in VLSI hardware.  The 
breakdown is shown below: 
 

(1) Our DOminant-element-based GradiEnt descent and DYNamic initial 
learning rate (DOGEDYN) technique is compatible as a gradient descent technique in terms of 
identical convergent attractor, and in addition, our technique requires much less computation 
(one addition and multiplication per element) while the gradient descent technique requires n 
multiplications and n additions where n is the dimension of the input vector.  This advantage will 
allow having less hardware, hence low power consumption and a compact engine (see appendix 
A). 
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(2) Our technique demonstrated its superiority in fast learning convergence as 

compared with the gradient descent technique (see appendix B) from which the real-time 
extraction may be achieved from the VLSI hardware approach. 
 

2. Other Results 
 

Due to the simplicity of our architecture and the less-computational requirement, 
the fully parallel hyperspectral extraction engine can be achieved on a single chip.  The 
advantage of our technique is its capability to extract fully parallel spectral data for principal 
features in a high-speed, low-power and compact system. 

 
 

C. SIGNIFICANCE OF RESULTS 
 

This task developed a novel DODGEDYN technique for real-time adaptive PCA for 
feature extraction and data compression to solve the object-recognition problem in a dynamic 
environment.  
 

The results indicated that the combination of two innovative techniques (dominant 
element component and initial dynamic learning rate) provided a faster-learning-convergence, 
less-computation, low-power and compact system.  Hence, the real-time adaptive PCA engine 
can be achieved in VLSI hardware for object recognition or data compression in dynamic 
environment applications (e.g., real-time landing-site identification for NASA precision landing 
tasks). 
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H. APPENDICES:   
 

A. CELL ARCHITECTURE 
 
The energy function (objective function) is defined: 
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Where k is the number of measurement vectors, tx  is a measured vector at time t and wi 
is the ith principal vector (or eigen vector).   
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Figure 1: Single New PCA learning unit.   
 
In Figure 1, the raw input data xt is subtracted from the sum of the previous projected data on the 
previous principal components to obtain t

iy  as defined in the equation (2).  The Σ box provides 
the inner product between vectors t

iy  and wi.  The result of the Σ box operation will, again, be 
summed with the previous multiplication of yij

t and wij and its output will be multiplied with the 
learning rate ζi before updating to wij as described in equation (3).  This single unit can be 
cascaded into n units to obtain a PCA learning vector and this learning vector can be cascaded to 
obtain many components as parallel eigenvector extractors as needed for each application. 
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B. ENERGY LEARNING LEVEL VS PRINCIPAL COMPONENT EXTRACTED  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The DOGEDYN, GradiEnt Descent (GED), DOminant element based GradiEnt Descent 
(DOGED), GradiEnt Descent with DYNamic initial learning rate (GEDYN) techniques are used 
in this study.  In the Figure above, the DODGEDYN has shown its superiority in convergence in 
energy reduction (y-axis) for each component extracted (x-axis) with the fixed 150 batch 
iterations as compared with GED, DODGED, and GEDYN where the energy level is defined in 
equation (1).  The GED technique is flat out at third component, the DOGED is up to sixth 
component, and the GEDYN is able to extract around eleventh component. 

0 2 4 6 8 10 12 14 16 18 20
0.02

0.03

0.04

0.05

0.06

0.07

0.08
The Energy Learning Curves

R
M

S
 o

f E
ne

rg
y 

Le
ve

l

Number of Principle Component Extracted

o_GED 
+_DOGED 
x_GEDYN 
*_DOGEDYN 


